Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
1.
Plant Biotechnol J ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593377

RESUMO

Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.

3.
Int J Med Sci ; 21(5): 809-816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617011

RESUMO

This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control (MQC), including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.


Assuntos
Cardiotoxicidade , Doenças Mitocondriais , Humanos , Cardiotoxicidade/etiologia , Doxorrubicina/efeitos adversos , Mitocôndrias , Antraciclinas
4.
Am J Emerg Med ; 81: 10-15, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38626643

RESUMO

INTRODUCTION: Patients exhibiting signs of hyperactive delirium with severe agitation (HDSA) may require sedating medications for stabilization and safe transport to the hospital. Determining the patient's weight and calculating the correct weight-based dose may be challenging in an emergency. A fixed dose ketamine protocol is an alternative to the traditional weight-based administration, which may also reduce dosing errors. The objective of this study was to evaluate the frequency and characteristics of adverse events following pre-hospital ketamine administration for HDSA. METHODS: Emergency Medical Services (EMS) records from four agencies were searched for prehospital ketamine administration. Cases were included if a 250 mg dose of ketamine was administered on standing order to an adult patient for clinical signs consistent with HDSA. Protocols allowed for a second 250 mg dose of ketamine if the first dose was not effective. Both the 250 mg initial dose and the total prehospital dose were analyzed for weight based dosing and adverse events. RESULTS: Review of 132 cases revealed 60 cases that met inclusion criteria. Patients' median weight was 80 kg (range: 50-176 kg). No patients were intubated by EMS, one only requiring suction, three required respiratory support via bag valve mask (BVM). Six (10%) patients were intubated in the emergency department (ED) including the three (5%) supported by EMS via BVM, three (5%) others who were sedated further in the ED prior to requiring intubation. All six patients who were intubated were discharged from the hospital with a Cerebral Performance Category (CPC) 1 score. The weight-based dosing equivalent for the 250 mg initial dose (OR: 2.62, CI: 0.67-10.22) and the total prehospital dose, inclusive of the 12 patients that were administered a second dose, (OR: 0.74, CI: 0.27, 2.03), were not associated with the need for intubation. CONCLUSION: The 250 mg fixed dose of ketamine was not >5 mg/kg weight-based dose equivalent for all patients in this study. Although a second 250 mg dose of ketamine was permitted under standing orders, only 12 (20%) of the patients were administered a second dose, none experienced an adverse event. This indicates that the 250 mg initial dose was effective for 80% of the patients. Four patients with prehospital adverse events likely related to the administration of ketamine were found. One required suction, three (5%) requiring BVM respiratory support by EMS were subsequently intubated upon arrival in the ED. All 60 patients were discharged from the hospital alive. Further research is needed to determine an optimal single administration dose for ketamine in patients exhibiting signs of HDSA, if employing a standardized fixed dose medication protocol streamlines administration, and if the fixed dose medication reduces the occurrence of dosage errors.

5.
BMC Biol ; 22(1): 92, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654264

RESUMO

BACKGROUND: Transposable elements (TEs) have a profound influence on the trajectory of plant evolution, driving genome expansion and catalyzing phenotypic diversification. The pangenome, a comprehensive genetic pool encompassing all variations within a species, serves as an invaluable tool, unaffected by the confounding factors of intraspecific diversity. This allows for a more nuanced exploration of plant TE evolution. RESULTS: Here, we constructed a pangenome for diploid A-genome cotton using 344 accessions from representative geographical regions, including 223 from China as the main component. We found 511 Mb of non-reference sequences (NRSs) and revealed the presence of 5479 previously undiscovered protein-coding genes. Our comprehensive approach enabled us to decipher the genetic underpinnings of the distinct geographic distributions of cotton. Notably, we identified 3301 presence-absence variations (PAVs) that are closely tied to gene expression patterns within the pangenome, among which 2342 novel expression quantitative trait loci (eQTLs) were found residing in NRSs. Our investigation also unveiled contrasting patterns of transposon proliferation between diploid and tetraploid cotton, with long terminal repeat (LTR) retrotransposons exhibiting a synchronized surge in polyploids. Furthermore, the invasion of LTR retrotransposons from the A subgenome to the D subgenome triggered a substantial expansion of the latter following polyploidization. In addition, we found that TE insertions were responsible for the loss of 36.2% of species-specific genes, as well as the generation of entirely new species-specific genes. CONCLUSIONS: Our pangenome analyses provide new insights into cotton genomics and subgenome dynamics after polyploidization and demonstrate the power of pangenome approaches for elucidating transposon impacts and genome evolution.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Genoma de Planta , Gossypium , Gossypium/genética , Elementos de DNA Transponíveis/genética , Locos de Características Quantitativas
6.
Research (Wash D C) ; 7: 0331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550779

RESUMO

The presence of endotoxemia is strongly linked to the development of endothelial dysfunction and disruption of myocardial microvascular reactivity. These factors play a crucial role in the progression of endotoxemic cardiomyopathy. Sepsis-related multiorgan damage involves the participation of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). However, whether DNA-PKcs contributes to endothelial dysfunction and myocardial microvascular dysfunction during endotoxemia remains unclear. Hence, we conducted experiments in mice subjected to lipopolysaccharide (LPS)-induced endotoxemic cardiomyopathy, as well as assays in primary mouse cardiac microvascular endothelial cells. Results showed that endothelial-cell-specific DNA-PKcs ablation markedly attenuated DNA damage, sustained microvessel perfusion, improved endothelial barrier function, inhibited capillary inflammation, restored endothelium-dependent vasodilation, and improved heart function under endotoxemic conditions. Furthermore, we show that upon LPS stress, DNA-PKcs recognizes a TQ motif in cofilin2 and consequently induces its phosphorylation at Thr25. Phosphorylated cofilin2 shows increased affinity for F-actin and promotes F-actin depolymerization, resulting into disruption of the endothelial barrier integrity, microvascular inflammation, and defective eNOS-dependent vasodilation. Accordingly, cofilin2-knockin mice expressing a phospho-defective (T25A) cofilin2 mutant protein showed improved endothelial integrity and myocardial microvascular function upon induction of endotoxemic cardiomyopathy. These findings highlight a novel mechanism whereby DNA-PKcs mediates cofilin2Thr25 phosphorylation and subsequent F-actin depolymerization to contribute to endotoxemia-related cardiac microvascular dysfunction.

7.
Cell Stress Chaperones ; 29(2): 349-357, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485043

RESUMO

This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control, including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.


Assuntos
Cardiotoxicidade , Doenças Mitocondriais , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Doxorrubicina/efeitos adversos , Mitocôndrias , Antibióticos Antineoplásicos/efeitos adversos , Doenças Mitocondriais/complicações , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Miócitos Cardíacos
8.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38492791

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Assuntos
Rosa , Ratos , Animais , Serotonina/metabolismo , Irã (Geográfico) , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/metabolismo , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapses/metabolismo , Estresse Psicológico/tratamento farmacológico , Hipocampo , Modelos Animais de Doenças
9.
Phytother Res ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447978

RESUMO

We investigated the mechanism by which quercetin preserves mitochondrial quality control (MQC) in cardiomyocytes subjected to ischemia-reperfusion stress. An enzyme-linked immunosorbent assay was employed in the in vivo experiments to assess myocardial injury markers, measure the transcript levels of SIRT5/DNAPK-cs/MLKL during various time intervals of ischemia-reperfusion, and observe structural changes in cardiomyocytes using transmission electron microscopy. In in vitro investigations, adenovirus transfection was employed to establish a gene-modified model of DNA-PKcs, and primary cardiomyocytes were obtained from a mouse model with modified SIRT5 gene. Reverse transcription polymerase chain reaction, laser confocal microscopy, immunofluorescence localization, JC-1 fluorescence assay, Seahorse energy analysis, and various other assays were applied to corroborate the regulatory influence of quercetin on the MQC network in cardiomyocytes after ischemia-reperfusion. In vitro experiments demonstrated that ischemia-reperfusion injury caused changes in the structure of the myocardium. It was seen that quercetin had a beneficial effect on the myocardial tissue, providing protection. As the ischemia-reperfusion process continued, the levels of DNA-PKcs/SIRT5/MLKL transcripts were also found to change. In vitro investigations revealed that quercetin mitigated cardiomyocyte injury caused by mitochondrial oxidative stress through DNA-PKcs, and regulated mitophagy and mitochondrial kinetics to sustain optimal mitochondrial energy metabolism levels. Quercetin, through SIRT5 desuccinylation, modulated the stability of DNA-PKcs, and together they regulated the "mitophagy-unfolded protein response." This preserved the integrity of mitochondrial membrane and genome, mitochondrial dynamics, and mitochondrial energy metabolism. Quercetin may operate synergistically to oversee the regulation of mitophagy and the unfolded protein response through DNA-PKcs-SIRT5 interaction.

10.
Int J Med Sci ; 21(4): 755-764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464835

RESUMO

Alcoholic liver disease (ALD) poses a substantial global health challenge, with its pathogenesis deeply rooted in mitochondrial dysfunction. Our study explores the pivotal roles of Phosphoglycerate mutase family member 5 (Pgam5) and Voltage-Dependent Anion Channel 1 (VDAC1) in the progression of ALD, providing novel insights into their interplay and impact on mitochondrial integrity. We demonstrate that Pgam5 silencing preserves hepatocyte viability and attenuates ethanol-induced apoptosis, underscoring its detrimental role in exacerbating hepatocyte dysfunction. Pgam5's influence extends to the regulation of VDAC1 oligomerization, a key process in mitochondrial permeability transition pore (mPTP) opening, mitochondrial swelling, and apoptosis initiation. Notably, the inhibition of VDAC1 oligomerization through Pgam5 silencing or pharmacological intervention (VBIT-12) significantly preserves mitochondrial function, evident in the maintenance of mitochondrial membrane potential and reduced reactive oxygen species (ROS) production. In vivo experiments using hepatocyte-specific Pgam5 knockout (Pgam5hKO) and control mice reveal that Pgam5 deficiency mitigates ethanol-induced liver histopathology, inflammation, lipid peroxidation, and metabolic disorder, further supporting its role in ALD progression. Our findings highlight the critical involvement of Pgam5 and VDAC1 in mitochondrial dysfunction in ALD, suggesting potential therapeutic targets. While promising, these findings necessitate further research, including human studies, to validate their clinical applicability and explore broader implications in liver diseases. Overall, our study provides a significant advancement in understanding ALD pathophysiology, paving the way for novel therapeutic strategies targeting mitochondrial pathways in ALD.


Assuntos
Hepatopatias Alcoólicas , Doenças Mitocondriais , Animais , Humanos , Camundongos , Etanol/toxicidade , Etanol/metabolismo , Hepatopatias Alcoólicas/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosfoglicerato Mutase/genética , Fosfoglicerato Mutase/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
11.
Int J Med Sci ; 21(4): 633-643, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464826

RESUMO

Sepsis induces profound disruptions in cellular homeostasis, particularly impacting mitochondrial function in cardiovascular and cerebrovascular systems. This study elucidates the regulatory role of the Pyruvate Kinase M2 (PKM2)- Prohibitin 2 (PHB2) axis in mitochondrial quality control during septic challenges and its protective effects against myocardial and cerebral injuries. Employing LPS-induced mouse models, we demonstrate a significant downregulation of PKM2 and PHB2 in both heart and brain tissues post-sepsis, with corresponding impairments in mitochondrial dynamics, including fission, fusion, and mitophagy. Overexpression of PKM2 and PHB2 not only restores mitochondrial function, as evidenced by normalized ATP production and membrane potential but also confers resistance to oxidative stress by mitigating reactive oxygen species generation. These cellular mechanisms translate into substantial in vivo benefits, with transgenic mice overexpressing PKM2 or PHB2 displaying remarkable resistance to sepsis-induced cardiomyocyte and neuronal apoptosis, and organ dysfunction. Our findings highlight the PKM2-PHB2 interaction as a novel therapeutic target for sepsis, providing a foundation for future research into mitochondrial-based interventions to treat this condition. The study's insights into the molecular underpinnings of sepsis-induced organ failure pave the way for potential clinical applications in the management of sepsis and related pathologies.


Assuntos
Mitocôndrias , Sepse , Animais , Camundongos , Apoptose/genética , Miócitos Cardíacos , Estresse Oxidativo , Sepse/complicações , Sepse/genética
12.
Front Oncol ; 14: 1308493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410105

RESUMO

Background: Ectopic tissue is rarely found in the bladder for adults. Currently, there have been reports of ectopic prostate and colon tissue in the bladder. These ectopic tissues are manifested as a bladder mass and cause lower urinary tract symptoms. However, the ectopic corpus cavernosum in the bladder has never been reported, and its clinical characteristics and treatment have not been explored yet. Case summary: A 3-year-old boy was admitted to the hospital due to 1 month of urinary frequency. The physical examination was unremarkable. Urine analysis from other hospitals showed an elevated urine white blood cell count of 17.9/ul. In addition, ultrasound indicated a possible bladder mass. CT and MRI showed a well-margined lesion (1.9×1.9 cm) in the bladder trigone. Through preoperative imaging, we diagnosed a bladder tumor (inclined towards benign). The transurethral resection of the bladder tumor was performed. Unfortunately, the surgery was unsuccessful due to the difficulty in removing the excised tissue through the urethra. Subsequently, bladder incision and tumor resection were performed. The tumor was successfully removed. Surprisingly, the postoperative pathology showed that the tumor tissue was corpus cavernosum. The pathological diagnosis was ectopic corpus cavernosum in the bladder. No complications were found after the operation, and no recurrence was observed during follow-up. Conclusion: The ectopic corpus cavernosum in the bladder has never been reported for children, which is presented as a benign tumor with rapid proliferation and large size. Surgery is recommended. However, the transurethral resection of bladder tumors is difficult to perform due to narrow urethra and limited surgical instruments. Bladder incision and tumor resection may be preferred.

13.
Theranostics ; 14(4): 1561-1582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389837

RESUMO

Rationale: The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) promotes pathological mitochondrial fission during septic acute kidney injury. The mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) is a mitochondria-derived peptide that exhibits anti-inflammatory properties during cardiovascular illnesses. We explored whether endotoxemia-induced myocardial microvascular injury involved DNA-PKcs and MOTS-c dysregulation. Methods: To induce endotoxemia in vivo, endothelial cell-specific DNA-PKcs-knockout mice were injected intraperitoneally with a single dose of lipopolysaccharide (10 mg/kg) and evaluated after 72 h. Results: Lipopolysaccharide exposure increased DNA-PKcs activity in cardiac microvascular endothelial cells, while pharmacological inhibition or endothelial cell-specific genetic ablation of DNA-PKcs reduced lipopolysaccharide-induced myocardial microvascular dysfunction. Proteomic analyses showed that endothelial DNA-PKcs ablation primarily altered mitochondrial protein expression. Verification assays confirmed that DNA-PKcs drastically repressed MOTS-c transcription by inducing mtDNA breaks via pathological mitochondrial fission. Inhibiting MOTS-c neutralized the endothelial protective effects of DNA-PKcs ablation, whereas MOTS-c supplementation enhanced endothelial barrier function and myocardial microvascular homeostasis under lipopolysaccharide stress. In molecular studies, MOTS-c downregulation disinhibited c-Jun N-terminal kinase (JNK), allowing JNK to phosphorylate profilin-S173. Inhibiting JNK or transfecting cells with a profilin phosphorylation-defective mutant improved endothelial barrier function by preventing F-actin depolymerization and lamellipodial degradation following lipopolysaccharide treatment. Conclusions: DNA-PKcs inactivation during endotoxemia could be a worthwhile therapeutic strategy to restore MOTS-c expression, prevent JNK-induced profilin phosphorylation, improve F-actin polymerization, and enhance lamellipodial integrity, ultimately ameliorating endothelial barrier function and reducing myocardial microvascular injury.


Assuntos
Endotoxemia , Traumatismos Cardíacos , Animais , Camundongos , Actinas , Domínio Catalítico , DNA , Proteína Quinase Ativada por DNA , Células Endoteliais , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases , Profilinas , Proteômica , Pseudópodes
14.
Int J Med Sci ; 21(3): 547-561, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322592

RESUMO

Type-3 cardiorenal syndrome (CRS-3) is acute kidney injury followed by cardiac injury/dysfunction. Mitochondrial injury may impair myocardial function during CRS-3. Since dual-specificity phosphatase 1 (DUSP1) and prohibitin 2 (PHB2) both promote cardiac mitochondrial quality control, we assessed whether these proteins were dysregulated during CRS-3-related cardiac depression. We found that DUSP1 was downregulated in heart tissues from a mouse model of CRS-3. DUSP1 transgenic (DUSP1Tg) mice were protected from CRS-3-induced myocardial damage, as evidenced by their improved heart function and myocardial structure. CRS-3 induced the inflammatory response, oxidative stress and mitochondrial dysfunction in wild-type hearts, but not in DUSP1Tg hearts. DUSP1 overexpression normalized cardiac mitochondrial quality control during CRS-3 by suppressing mitochondrial fission, restoring mitochondrial fusion, re-activating mitophagy and augmenting mitochondrial biogenesis. We found that DUSP1 sustained cardiac mitochondrial quality control by binding directly to PHB2 and maintaining PHB2 phosphorylation, while CRS-3 disrupted this physiological interaction. Transgenic knock-in mice carrying the Phb2S91D variant were less susceptible to cardiac depression upon CRS-3, due to a reduced inflammatory response, suppressed oxidative stress and improved mitochondrial quality control in their heart tissues. Thus, CRS-3-induced myocardial dysfunction can be attributed to reduced DUSP1 expression and disrupted DUSP1/PHB2 binding, leading to defective cardiac mitochondrial quality control.


Assuntos
Síndrome Cardiorrenal , Fosfatase 1 de Especificidade Dupla , Proibitinas , Animais , Camundongos , Síndrome Cardiorrenal/metabolismo , Coração , Camundongos Transgênicos , Miocárdio/metabolismo , Proibitinas/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Mitocôndrias
15.
Mol Cell ; 84(7): 1257-1270.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38377993

RESUMO

Current base editors (BEs) use DNA deaminases, including cytidine deaminase in cytidine BE (CBE) or adenine deaminase in adenine BE (ABE), to facilitate transition nucleotide substitutions. Combining CBE or ABE with glycosylase enzymes can induce limited transversion mutations. Nonetheless, a critical demand remains for BEs capable of generating alternative mutation types, such as T>G corrections. In this study, we leveraged pre-trained protein language models to optimize a uracil-N-glycosylase (UNG) variant with altered specificity for thymines (eTDG). Notably, after two rounds of testing fewer than 50 top-ranking variants, more than 50% exhibited over 1.5-fold enhancement in enzymatic activities. When eTDG was fused with nCas9, it induced programmable T-to-S (G/C) substitutions and corrected db/db diabetic mutation in mice (up to 55%). Our findings not only establish orthogonal strategies for developing novel BEs but also demonstrate the capacities of protein language models for optimizing enzymes without extensive task-specific training data.


Assuntos
Ácidos Alcanossulfônicos , Edição de Genes , Uracila-DNA Glicosidase , Animais , Camundongos , Mutação , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
16.
Chin J Integr Med ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329655

RESUMO

Acute myocardial infarction (AMI), characterized by high incidence and mortality rates, poses a significant public health threat. Reperfusion therapy, though the preferred treatment for AMI, often exacerbates cardiac damage, leading to myocardial ischemia/reperfusion injury (MI/RI). Consequently, the development of strategies to reduce MI/RI is an urgent priority in cardiovascular therapy. Chinese medicine, recognized for its multi-component, multi-pathway, and multi-target capabilities, provides a novel approach for alleviating MI/RI. A key area of interest is the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. This pathway is instrumental in regulating inflammatory responses, oxidative stress, apoptosis, endoplasmic reticulum stress, and ferroptosis in MI/RI. This paper presents a comprehensive overview of the Nrf2/HO-1 signaling pathway's structure and its influence on MI/RI. Additionally, it reviews the latest research on leveraging Chinese medicine to modulate the Nrf2/HO-1 pathway in MI/RI treatment.

17.
Circulation ; 149(17): 1375-1390, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38214189

RESUMO

BACKGROUND: Cardiac transverse tubules (T-tubules) are anchored to sarcomeric Z-discs by costameres to establish a regular spaced pattern. One of the major components of costameres is the dystrophin-glycoprotein complex (DGC). Nevertheless, how the assembly of the DGC coordinates with the formation and maintenance of T-tubules under physiological and pathological conditions remains unclear. METHODS: Given the known role of Ptpn23 (protein tyrosine phosphatase, nonreceptor type 23) in regulating membrane deformation, its expression in patients with dilated cardiomyopathy was determined. Taking advantage of Cre/Loxp, CRISPR/Cas9, and adeno-associated virus 9 (AAV9)-mediated in vivo gene editing, we generated cardiomyocyte-specific Ptpn23 and Actn2 (α-actinin-2, a major component of Z-discs) knockout mice. We also perturbed the DGC by using dystrophin global knockout mice (DmdE4*). MM 4-64 and Di-8-ANEPPS staining, Cav3 immunofluorescence, and transmission electron microscopy were performed to determine T-tubule structure in isolated cells and intact hearts. In addition, the assembly of the DGC with Ptpn23 and dystrophin loss of function was determined by glycerol-gradient fractionation and SDS-PAGE analysis. RESULTS: The expression level of Ptpn23 was reduced in failing hearts from dilated cardiomyopathy patients and mice. Genetic deletion of Ptpn23 resulted in disorganized T-tubules with enlarged diameters and progressive dilated cardiomyopathy without affecting sarcomere organization. AAV9-mediated mosaic somatic mutagenesis further indicated a cell-autonomous role of Ptpn23 in regulating T-tubule formation. Genetic and biochemical analyses showed that Ptpn23 was essential for the integrity of costameres, which anchor the T-tubule membrane to Z-discs, through interactions with α-actinin and dystrophin. Deletion of α-actinin altered the subcellular localization of Ptpn23 and DGCs. In addition, genetic inactivation of dystrophin caused similar T-tubule defects to Ptpn23 loss-of-function without affecting Ptpn23 localization at Z-discs. Last, inducible Ptpn23 knockout at 1 month of age showed Ptpn23 is also required for the maintenance of T-tubules in adult cardiomyocytes. CONCLUSIONS: Ptpn23 is essential for cardiac T-tubule formation and maintenance along Z-discs. During postnatal heart development, Ptpn23 interacts with sarcomeric α-actinin and coordinates the assembly of the DGC at costameres to sculpt T-tubule spatial patterning and morphology.

18.
J Biopharm Stat ; : 1-24, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196244

RESUMO

Measurements are generally collected as unilateral or bilateral data in clinical trials, epidemiology, or observational studies. For example, in ophthalmology studies, the primary outcome is often obtained from one eye or both eyes of an individual. In medical studies, the relative risk is usually the parameter of interest and is commonly used. In this article, we develop three confidence intervals for the relative risk for combined unilateral and bilateral correlated data under the equal dependence assumption. The proposed confidence intervals are based on maximum likelihood estimates of parameters derived using the Fisher scoring method. Simulation studies are conducted to evaluate the performance of proposed confidence intervals with respect to the empirical coverage probability, the mean interval width, and the ratio of mesial non-coverage probability to the distal non-coverage probability. We also compare the proposed methods with the confidence interval based on the method of variance estimates recovery and the confidence interval obtained from the modified Poisson regression model with correlated binary data. We recommend the score confidence interval for general applications because it best controls converge probabilities at the 95% level with reasonable mean interval width. We illustrate the methods with a real-world example.

19.
Cell Mol Biol Lett ; 29(1): 21, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291374

RESUMO

BACKGROUND: Septic cardiomyopathy (SCM), a common cardiovascular comorbidity of sepsis, has emerged among the leading causes of death in patients with sepsis. SCM's pathogenesis is strongly affected by mitochondrial metabolic dysregulation and immune infiltration disorder. However, the specific mechanisms and their intricate interactions in SCM remain unclear. This study employed bioinformatics analysis and drug discovery approaches to identify the regulatory molecules, distinct functions, and underlying interactions of mitochondrial metabolism and immune microenvironment, along with potential interventional strategies in SCM. METHODS: GSE79962, GSE171546, and GSE167363 datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and module genes were identified using Limma and Weighted Correlation Network Analysis (WGCNA), followed by functional enrichment analysis. Machine learning algorithms, including support vector machine-recursive feature elimination (SVM-RFE), least absolute shrinkage and selection operator (LASSO) regression, and random forest, were used to screen mitochondria-related hub genes for early diagnosis of SCM. Subsequently, a nomogram was developed based on six hub genes. The immunological landscape was evaluated by single-sample gene set enrichment analysis (ssGSEA). We also explored the expression pattern of hub genes and distribution of mitochondria/inflammation-related pathways in UMAP plots of single-cell dataset. Potential drugs were explored using the Drug Signatures Database (DSigDB). In vivo and in vitro experiments were performed to validate the pathogenetic mechanism of SCM and the therapeutic efficacy of candidate drugs. RESULTS: Six hub mitochondria-related DEGs [MitoDEGs; translocase of inner mitochondrial membrane domain-containing 1 (TIMMDC1), mitochondrial ribosomal protein S31 (MRPS31), F-box only protein 7 (FBXO7), phosphatidylglycerophosphate synthase 1 (PGS1), LYR motif containing 7 (LYRM7), and mitochondrial chaperone BCS1 (BCS1L)] were identified. The diagnostic nomogram model based on the six hub genes demonstrated high reliability and validity in both the training and validation sets. The immunological microenvironment differed between SCM and control groups. The Spearman correlation analysis revealed that hub MitoDEGs were significantly associated with the infiltration of immune cells. Upregulated hub genes showed remarkably high expression in the naive/memory B cell, CD14+ monocyte, and plasma cell subgroup, evidenced by the feature plot. The distribution of mitochondria/inflammation-related pathways varied across subgroups among control and SCM individuals. Metformin was predicted to be the most promising drug with the highest combined score. Its efficacy in restoring mitochondrial function and suppressing inflammatory responses has also been validated. CONCLUSIONS: This study presents a comprehensive mitochondrial metabolism and immune infiltration landscape in SCM, providing a potential novel direction for the pathogenesis and medical intervention of SCM.


Assuntos
Cardiomiopatias , Sepse , Humanos , Reprodutibilidade dos Testes , Mitocôndrias , Cardiomiopatias/genética , DNA Mitocondrial , Biologia Computacional , Inflamação , Sepse/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , ATPases Associadas a Diversas Atividades Celulares , Complexo III da Cadeia de Transporte de Elétrons , Chaperonas Moleculares , Proteínas Mitocondriais
20.
Int J Biol Sci ; 20(2): 433-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169612

RESUMO

METTL3, an RNA methyltransferase enzyme, exerts therapeutic effects on various cardiovascular diseases. Myocardial ischemia-reperfusion injury (MIRI) and subsequently cardiac fibrosis is linked to acute cardiomyocyte death or dysfunction induced by mitochondrial damage, particularly mitochondrial fission. Our research aims to elucidate the potential mechanisms underlying the therapeutic actions of METTL3 in MIRI, with focus on mitochondrial fission. When compared with Mettl3flox mice subjected to MIRI, Mettl3 cardiomyocyte knockout (Mettl3Cko) mice have reduced infarct size, decreased serum levels of myocardial injury-related factors, limited cardiac fibrosis, and preserved myocardial ultrastructure and contractile/relaxation capacity. The cardioprotective actions of Mettl3 knockout were associated with reduced inflammatory responses, decreased myocardial neutrophil infiltration, and suppression of cardiomyocyte death. Through signaling pathway validation experiments and assays in cultured HL-1 cardiomyocytes exposed to hypoxia/reoxygenation, we confirmed that Mettl3 deficiency interfere with DNA-PKcs phosphorylation, thereby blocking the downstream activation of Fis1 and preventing pathological mitochondrial fission. In conclusion, this study confirms that inhibition of METTL3 can alleviate myocardial cardiac fibrosis inflammation and prevent cardiomyocyte death under reperfusion injury conditions by disrupting DNA-PKcs/Fis1-dependent mitochondrial fission, ultimately improving cardiac function. These findings suggest new approaches for clinical intervention in patients with MIRI.


Assuntos
Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica , Animais , Humanos , Camundongos , Apoptose , DNA/metabolismo , Fibrose , Isquemia/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...